The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 341 – 360 of 1227

Showing per page

A New Method for Computing the Eccentric Connectivity Index of Fullerenes

Ghorbani, Modjtaba, Malekjani, Khadijeh (2012)

Serdica Journal of Computing

ACM Computing Classification System (1998): G.2.2, G.2.3.The eccentric connectivity index of the molecular graph G, ξ^c (G), was proposed by Sharma, Goswami and Madan. It is defined as ξ^c (G) = Σu∈V(G)degG(u) ecc(u), where degG(x) denotes the degree of the vertex x in G and ecc(u) = Max{d(x, u) | x ∈ V (G)}. In this paper this graph invariant is computed for an infinite class of fullerenes by means of group action.

A new proof of the q -Dixon identity

Victor J. W. Guo (2018)

Czechoslovak Mathematical Journal

We give a new and elementary proof of Jackson’s terminating q -analogue of Dixon’s identity by using recurrences and induction.

Currently displaying 341 – 360 of 1227