Displaying 641 – 660 of 8522

Showing per page

A proof of menger's theorem by contraction

Frank Göring (2002)

Discussiones Mathematicae Graph Theory

A short proof of the classical theorem of Menger concerning the number of disjoint AB-paths of a finite graph for two subsets A and B of its vertex set is given. The main idea of the proof is to contract an edge of the graph.

A proof of the crossing number of K 3 , n in a surface

Pak Tung Ho (2007)

Discussiones Mathematicae Graph Theory

In this note we give a simple proof of a result of Richter and Siran by basic counting method, which says that the crossing number of K 3 , n in a surface with Euler genus ε is ⎣n/(2ε+2)⎦ n - (ε+1)(1+⎣n/(2ε+2)⎦).

A q-analogue of complete monotonicity

Anna Kula (2008)

Colloquium Mathematicae

The aim of this paper is to give a q-analogue for complete monotonicity. We apply a classical characterization of Hausdorff moment sequences in terms of positive definiteness and complete monotonicity, adapted to the q-situation. The method due to Maserick and Szafraniec that does not need moments turns out to be useful. A definition of a q-moment sequence appears as a by-product.

A quantitative aspect of non-unique factorizations: the Narkiewicz constants II

Weidong Gao, Yuanlin Li, Jiangtao Peng (2011)

Colloquium Mathematicae

Let K be an algebraic number field with non-trivial class group G and K be its ring of integers. For k ∈ ℕ and some real x ≥ 1, let F k ( x ) denote the number of non-zero principal ideals a K with norm bounded by x such that a has at most k distinct factorizations into irreducible elements. It is well known that F k ( x ) behaves, for x → ∞, asymptotically like x ( l o g x ) 1 / | G | - 1 ( l o g l o g x ) k ( G ) . In this article, it is proved that for every prime p, ( C p C p ) = 2 p , and it is also proved that ( C m p C m p ) = 2 m p if ( C m C m ) = 2 m and m is large enough. In particular, it is shown that for...

Currently displaying 641 – 660 of 8522