The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 34

Displaying 661 – 663 of 663

Showing per page

Cyclically k-partite digraphs and k-kernels

Hortensia Galeana-Sánchez, César Hernández-Cruz (2011)

Discussiones Mathematicae Graph Theory

Let D be a digraph, V(D) and A(D) will denote the sets of vertices and arcs of D, respectively. A (k,l)-kernel N of D is a k-independent set of vertices (if u,v ∈ N then d(u,v) ≥ k) and l-absorbent (if u ∈ V(D)-N then there exists v ∈ N such that d(u,v) ≤ l). A k-kernel is a (k,k-1)-kernel. A digraph D is cyclically k-partite if there exists a partition V i i = 0 k - 1 of V(D) such that every arc in D is a V i V i + 1 - a r c (mod k). We give a characterization for an unilateral digraph to be cyclically k-partite through the lengths...

Currently displaying 661 – 663 of 663

Previous Page 34