Association schemes of affine type over finite rings.
Associative products are defined using a scheme of Imrich & Izbicki [18]. These include the Cartesian, categorical, strong and lexicographic products, as well as others. We examine which product ⊗ and parameter p pairs are multiplicative, that is, p(G⊗H) ≥ p(G)p(H) for all graphs G and H or p(G⊗H) ≤ p(G)p(H) for all graphs G and H. The parameters are related to independence, domination and irredundance. This includes Vizing's conjecture directly, and indirectly the Shannon capacity of a graph...
A directed path graph is the intersection graph of a family of directed subpaths of a directed tree. A rooted path graph is the intersection graph of a family of directed subpaths of a rooted tree. Rooted path graphs are directed path graphs. Several characterizations are known for directed path graphs: one by forbidden induced subgraphs and one by forbidden asteroids. It is an open problem to find such characterizations for rooted path graphs. For this purpose, we are studying in this paper directed...
We compare the asymptotic growth of the order of the digraphs arising from a construction of Comellas and Fiol when applied to Faber-Moore digraphs versus plainly the Faber-Moore digraphs for the corresponding degree and diameter.
We prove asymptotic equipartition properties for simple hierarchical structures (modelled as multitype Galton-Watson trees) and networked structures (modelled as randomly coloured random graphs). For example, for large n, a networked data structure consisting of n units connected by an average number of links of order n / log n can be coded by about H × n bits, where H is an explicitly defined entropy. The main technique in our proofs are large deviation principles for suitably defined empirical...
We prove asymptotic equipartition properties for simple hierarchical structures (modelled as multitype Galton-Watson trees) and networked structures (modelled as randomly coloured random graphs). For example, for large n, a networked data structure consisting of n units connected by an average number of links of order n / log n can be coded by about H × n bits, where H is an explicitly defined entropy. The main technique in our proofs are large deviation principles for suitably defined empirical...