The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 101 –
120 of
123
A true Tree Calculus is being developed to make a joint study of the two statistics “eoc” (end of minimal chain) and “pom” (parent of maximum leaf) on the set of secant trees. Their joint distribution restricted to the set {eoc-pom ≤ 1} is shown to satisfy two partial difference equation systems, to be symmetric and to be expressed in the form of an explicit three-variable generating function.
In this paper, we first give several operator identities which extend the results of Chen and Liu, then make use of them to two -series identities obtained by the Euler expansions of and . Several -series identities are obtained involving a -series identity in Ramanujan’s Lost Notebook.
We establish q-analogs for four congruences involving central binomial coefficients. The q-identities necessary for this purpose are shown via the q-WZ method.
For any odd prime p we obtain q-analogues of van Hamme’s and Rodriguez-Villegas’ supercongruences involving products of three binomial coefficients such as
for p≡ 3 (mod 4),
for p≡ 2 (mod 3),
where and . We also prove q-analogues of the Sun brothers’ generalizations of the above supercongruences. Our proofs are elementary in nature and use the theory of basic hypergeometric series and combinatorial q-binomial identities including a new q-Clausen type summation formula.
G.D. Birkhoff a posé, par analogie avec le cas classique des équations différentielles, le problème de Riemann-Hilbert pour les systèmes “fuchsiens” aux -différences linéaires, à coefficients rationnels. Il l’a résolu dans le cas générique: l’objet classifiant qu’il introduit est constitué de la matrice de connexion et des exposants en et . Nous reprenons sa méthode dans le cas général, mais en traitant symétriquement et et sans recours à des solutions à croissance “sauvage”. Lorsque ...
The box parameter for words counts how often two letters w j and w k define a “box” such that all the letters w j+1; ..., w k−1 fall into that box. It is related to the visibility parameter and other parameters on words. Three models are considered: Words over a finite alphabet, permutations, and words with letters following a geometric distribution. A typical result is: The average box parameter for words over an M letter alphabet is asymptotically given by 2n − 2n H M/M, for fixed M and n → ∞.
We investigate the visibility parameter, i.e., the number of visible pairs, first for words over a finite alphabet, then for permutations of the finite set {1, 2, …, n}, and finally for words over an infinite alphabet whose letters occur with geometric probabilities. The results obtained for permutations correct the formula for the expectation obtained in a recent paper by Gutin et al. [Gutin G., Mansour T., Severini S., A characterization of horizontal visibility graphs and combinatorics on words,...
Currently displaying 101 –
120 of
123