The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 5 of 5

Showing per page

Binomial residues

Eduardo Cattani, Alicia Dickenstein, Bernd Sturmfels (2002)

Annales de l’institut Fourier

A binomial residue is a rational function defined by a hypergeometric integral whose kernel is singular along binomial divisors. Binomial residues provide an integral representation for rational solutions of A -hypergeometric systems of Lawrence type. The space of binomial residues of a given degree, modulo those which are polynomial in some variable, has dimension equal to the Euler characteristic of the matroid associated with A .

Bipartite graphs that are not circle graphs

André Bouchet (1999)

Annales de l'institut Fourier

The following result is proved: if a bipartite graph is not a circle graph, then its complement is not a circle graph. The proof uses Naji’s characterization of circle graphs by means of a linear system of equations with unknowns in GF ( 2 ) .At the end of this short note I briefly recall the work of François Jaeger on circle graphs.

Broken Circuits in Matroids-Dohmen’s Inductive Proof

Wojciech Kordecki, Anna Łyczkowska-Hanćkowiak (2013)

Discussiones Mathematicae Graph Theory

Dohmen [4] gives a simple inductive proof of Whitney’s famous broken circuits theorem. We generalise his inductive proof to the case of matroids

Currently displaying 1 – 5 of 5

Page 1