Another look at the localic Tychonoff theorem
We prove that a Boolean algebra is countable iff its subalgebra lattice admits a continuous complementation.
Let and , respectively, denote the partially ordered sets of homomorphism classes of finite undirected and directed graphs, respectively, both ordered by the homomorphism relation. Order theoretic properties of both have been studied extensively, and have interesting connections to familiar graph properties and parameters. In particular, the notion of a duality is closely related to the idea of splitting a maximal antichain. We construct both splitting and non-splitting infinite maximal antichains...
A covariant representation of the category of locales by approximate maps (mimicking a natural representation of continuous maps between spaces in which one approximates points by small open sets) is constructed. It is shown that it can be given a Kleisli shape, as a part of a more general Kleisli representation of meet preserving maps. Also, we present the spectrum adjunction in this approximation setting.
Generalized MV-algebras (= GMV-algebras) are non-commutative generalizations of MV-algebras. They are an algebraic counterpart of the non-commutative Łukasiewicz infinite valued fuzzy logic. The paper investigates approximation spaces in GMV-algebras based on their normal ideals.
We prove that every Archimedean atomic lattice effect algebra the center of which coincides with the set of all sharp elements is isomorphic to a subdirect product of horizontal sums of finite chains, and conversely. We show that every such effect algebra can be densely embedded into a complete effect algebra (its MacNeille completion) and that there exists an order continuous state on it.