Displaying 621 – 640 of 3879

Showing per page

Complete subobjects of fuzzy sets over M V -algebras

Jiří Močkoř (2004)

Czechoslovak Mathematical Journal

A subobjects structure of the category Ω - of Ω -fuzzy sets over a complete M V -algebra Ω = ( L , , , , ) is investigated, where an Ω -fuzzy set is a pair 𝐀 = ( A , δ ) such that A is a set and δ A × A Ω is a special map. Special subobjects (called complete) of an Ω -fuzzy set 𝐀 which can be identified with some characteristic morphisms 𝐀 Ω * = ( L × L , μ ) are then investigated. It is proved that some truth-valued morphisms ¬ Ω Ω * Ω * , Ω , Ω Ω * × Ω * Ω * are characteristic morphisms of complete subobjects.

Completeness properties of function rings in pointfree topology

Bernhard Banaschewski, Sung Sa Hong (2003)

Commentationes Mathematicae Universitatis Carolinae

This note establishes that the familiar internal characterizations of the Tychonoff spaces whose rings of continuous real-valued functions are complete, or σ -complete, as lattice ordered rings already hold in the larger setting of pointfree topology. In addition, we prove the corresponding results for rings of integer-valued functions.

Completion of a half linearly cyclically ordered group

Štefan Černák (2002)

Discussiones Mathematicae - General Algebra and Applications

The notion of a half lc-group G is a generalization of the notion of a half linearly ordered group. A completion of G by means of Dedekind cuts in linearly ordered sets and applying Świerczkowski's representation theorem of lc-groups is constructed and studied.

Completion of partially ordered sets

Sergey A. Solovyov (2006)

Discussiones Mathematicae - General Algebra and Applications

The paper considers a generalization of the standard completion of a partially ordered set through the collection of all its lower sets.

Complex calculus of variations

Michel Gondran, Rita Hoblos Saade (2003)

Kybernetika

In this article, we present a detailed study of the complex calculus of variations introduced in [M. Gondran: Calcul des variations complexe et solutions explicites d’équations d’Hamilton–Jacobi complexes. C.R. Acad. Sci., Paris 2001, t. 332, série I]. This calculus is analogous to the conventional calculus of variations, but is applied here to 𝐂 n functions in 𝐂 . It is based on new concepts involving the minimum and convexity of a complex function. Such an approach allows us to propose explicit solutions...

Currently displaying 621 – 640 of 3879