Exceptional units and numbers of small Mahler measure.
One can find in the mathematical literature many recent papers studying the generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, defined by means of generating functions. In this article we clarify the range of parameters in which these definitions are valid and when they provide essentially different families of polynomials. In particular, we show that, up to multiplicative constants, it is enough to take as the “main family” those given by and as an “exceptional family”...
Soit un groupe défini sur les rationnels, simplement connexe, -quasisimple et compact sur . On étudie des suites de sous-ensembles des points rationnels de définis par des conditions sur leur projection dans le groupe des adèles finies de . Nous montrons dans ce cadre un résultat d’équirépartition vers la probabilité de Haar sur le groupe des points réels. On utilise pour cela des propriétés de mélange de l’action du groupe des points adéliques sur l’espace . Pour illustrer ce résultat,...
We obtain some approximate identities whose accuracy depends on the bottom of the discrete spectrum of the Laplace-Beltrami operator in the automorphic setting and on the symmetries of the corresponding Maass wave forms. From the geometric point of view, the underlying Riemann surfaces are classical modular curves and Shimura curves.
We continue to investigate spt-type functions that arise from Bailey pairs. In this third paper on the subject, we proceed to introduce additional spt-type functions. We prove simple Ramanujan type congruences for these functions which can be explained by an spt-crank-type function. The spt-crank-type functions are actually defined first, with the spt-type functions coming from setting z = 1 in this definition. We find some of the spt-crank-type functions to have interesting representations as single...