Loading [MathJax]/extensions/MathZoom.js
In this paper we extend to arbitrary number fields a construction of Bost-Connes of a -dynamical system with spontaneous symmetry breaking and partition function the Riemann zeta function.
We apply the larger sieve to bound the number of matrices not having large order when reduced modulo the primes in an interval. Our motivation is the relation with linear recursive congruential generators. Basically our results establish that the probability of finding a matrix with large order modulo many primes drops drastically when a certain threshold involving the number of primes and the order is exceeded. We also study, for a given prime and a matrix, the existence of nearby non-similar...
Nous présentons un modèle mathématique permettant de reproduire le spectre expérimental des fréquences dans un composant électronique appelé boucle ouverte. Le spectre semble s’organiser suivant une contrainte de nature diophantienne sur les fréquences. Sa structure peut donc se comprendre via une étude de l’ensemble des fractions continues en fonction de leur longueur et de la taille des quotients partiels.
We describe a new model of massless thermal bosons which predicts an hyperbolic fluctuation spectrum at low frequencies. It is found that the partition function per mode is the Euler generating function for unrestricted partitions ). Thermodynamical quantities carry a strong arithmetical structure : they are given by series with Fourier coefficients equal to summatory functions of the power of divisors, with for the free energy, for the number of particles and for the internal energy. Low...
We study the integral quaternions and the integral octonions along the combinatorics of the -cell, a uniform polytope with the symmetry , and the Gosset polytope with the symmetry . We identify the set of the unit integral octonions or quaternions as a Gosset polytope or a -cell and describe the subsets of integral numbers having small length as certain combinations of unit integral numbers according to the or actions on the or the -cell, respectively. Moreover, we show that each...
Modular and quasimodular forms have played an important role in gravity and string theory. Eisenstein series have appeared systematically in the determination of spectrums and partition functions, in the description of non-perturbative effects, in higher-order corrections of scalar-field spaces, ...The latter often appear as gravitational instantons i.e. as special solutions of Einstein’s equations. In the present lecture notes we present a class of such solutions in four dimensions, obtained by...
We prove an upper bound for the number of primes p ≤ x in an arithmetic progression 1 (mod Q) that are exceptional in the sense that has no generator in the interval [1,B]. As a consequence we prove that if with a sufficiently large absolute constant c, then there exists a prime q dividing Q such that for some positive integer b ≤ B. Moreover we estimate the number of such q’s under suitable conditions.
Currently displaying 1 –
16 of
16