Displaying 581 – 600 of 765

Showing per page

Excellent connections in the motives of quadrics

Alexander Vishik (2011)

Annales scientifiques de l'École Normale Supérieure

In this article we prove the conjecture claiming that the motive of a real quadric is the “most decomposable” among anisotropic quadrics of given dimension over all fields. This imposes severe restrictions on the motive of arbitrary anisotropic quadric. As a corollary we estimate from below the rank of indecomposable direct summand in the motive of a quadric in terms of its dimension. This generalizes the well-known Binary Motive Theorem. Moreover, we have the description of the Tate motives involved....

Exceptional modular form of weight 4 on an exceptional domain contained in C27.

Henry H. Kim (1993)

Revista Matemática Iberoamericana

Resnikoff [12] proved that weights of a non trivial singular modular form should be integral multiples of 1/2, 1, 2, 4 for the Siegel, Hermitian, quaternion and exceptional cases, respectively. The θ-functions in the Siegel, Hermitian and quaternion cases provide examples of singular modular forms (Krieg [10]). Shimura [15] obtained a modular form of half-integral weight by analytically continuing an Eisenstein series. Bump and Bailey suggested the possibility of applying an analogue of Shimura's...

Exceptional sets in Waring's problem: two squares and s biquadrates

Lilu Zhao (2014)

Acta Arithmetica

Let R s ( n ) denote the number of representations of the positive number n as the sum of two squares and s biquadrates. When s = 3 or 4, it is established that the anticipated asymptotic formula for R s ( n ) holds for all n X with at most O ( X ( 9 - 2 s ) / 8 + ε ) exceptions.

Existence and reduction of generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials

Luis M. Navas, Francisco J. Ruiz, Juan L. Varona (2019)

Archivum Mathematicum

One can find in the mathematical literature many recent papers studying the generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, defined by means of generating functions. In this article we clarify the range of parameters in which these definitions are valid and when they provide essentially different families of polynomials. In particular, we show that, up to multiplicative constants, it is enough to take as the “main family” those given by 2 λ e t + 1 α e x t = n = 0 n ( α ) ( x ; λ ) t n n ! , λ { - 1 } , and as an “exceptional family”...

Existence et équidistribution des matrices de dénominateur n dans les groupes unitaires et orthogonaux

Antonin Guilloux (2008)

Annales de l’institut Fourier

Soit G un groupe défini sur les rationnels, simplement connexe, -quasisimple et compact sur . On étudie des suites de sous-ensembles des points rationnels de G définis par des conditions sur leur projection dans le groupe des adèles finies de G . Nous montrons dans ce cadre un résultat d’équirépartition vers la probabilité de Haar sur le groupe des points réels. On utilise pour cela des propriétés de mélange de l’action du groupe des points adéliques G ( 𝔸 ) sur l’espace L 2 ( G ( 𝔸 ) / G ( ) ) . Pour illustrer ce résultat,...

Currently displaying 581 – 600 of 765