Displaying 821 – 840 of 16591

Showing per page

A quantitative primitive divisor result for points on elliptic curves

Patrick Ingram (2009)

Journal de Théorie des Nombres de Bordeaux

Let E / K be an elliptic curve defined over a number field, and let P E ( K ) be a point of infinite order. It is natural to ask how many integers n 1 fail to occur as the order of P modulo a prime of K . For K = , E a quadratic twist of y 2 = x 3 - x , and P E ( ) as above, we show that there is at most one such n 3 .

A reciprocity congruence for an analogue of the Dedekind sum and quadratic reciprocity

Jeffrey L. Meyer (2000)

Journal de théorie des nombres de Bordeaux

In the transformation formulas for the logarithms of the classical theta-functions, certain sums arise that are analogous to the Dedekind sums in the transformation of the logarithm of the eta-function. A new reciprocity law is established for one of these analogous sums and then applied to prove the law of quadratic reciprocity.

A recovery of Brouncker's proof for the quadrature continued fraction.

Sergey Khrushchev (2006)

Publicacions Matemàtiques

350 years ago in Spring of 1655 Sir William Brouncker on a request by John Wallis obtained a beautiful continued fraction for 4/π. Brouncker never published his proof. Many sources on the history of Mathematics claim that this proof was lost forever. In this paper we recover the original proof from Wallis' remarks presented in his Arithmetica Infinitorum. We show that Brouncker's and Wallis' formulas can be extended to MacLaurin's sinusoidal spirals via related Euler's products. We derive Ramanujan's...

Currently displaying 821 – 840 of 16591