The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 881 – 900 of 1970

Showing per page

A rigidity phenomenon for the Hardy-Littlewood maximal function

Stefan Steinerberger (2015)

Studia Mathematica

The Hardy-Littlewood maximal function ℳ and the trigonometric function sin x are two central objects in harmonic analysis. We prove that ℳ characterizes sin x in the following way: Let f C α ( , ) be a periodic function and α > 1/2. If there exists a real number 0 < γ < ∞ such that the averaging operator ( A x f ) ( r ) = 1 / 2 r x - r x + r f ( z ) d z has a critical point at r = γ for every x ∈ ℝ, then f(x) = a + bsin(cx+d) for some a,b,c,d ∈ ℝ. This statement can be used to derive a characterization of trigonometric functions as those nonconstant...

A search for Tribonacci-Wieferich primes

Jiří Klaška (2008)

Acta Mathematica Universitatis Ostraviensis

Such problems as the search for Wieferich primes or Wall-Sun-Sun primes are intensively studied and often discused at present. This paper is devoted to a similar problem related to the Tribonacci numbers.

A sequence adapted from the movement of the center of mass of two planets in solar system

Jana Fialová (2018)

Communications in Mathematics

In this paper we derive a sequence from a movement of center of~mass of arbitrary two planets in some solar system, where the planets circle on concentric circles in a same plane. A trajectory of center of mass of the planets is discussed. A sequence of points on the trajectory is chosen. Distances of the points to the origin are calculated and a distribution function of a sequence of the distances is found.

Currently displaying 881 – 900 of 1970