An identity involving Ramanujan's sum.
"Ramanujan's 6-10-8 identity" inspired Hirschhorn to formulate his "3-7-5 identity". Now, we give a new "6-14-10 identity" which we suppose Ramanujan would have discovered but missed to mention in his notebooks.
In 1972 the author used a result of K.F. Roth on irregularities in distribution of sequences of real numbers to prove an analogous result related to the distribution of sequences of integers in prescribed residue classes. Here, a 1972 result of W.M. Schmidt, which is an improvement of Roth's result, is used to obtain an improved result for sequences of integers.
The paper introduces the calculation of a greatest common divisor of two univariate polynomials. Euclid’s algorithm can be easily simulated by the reduction of the Sylvester matrix to an upper triangular form. This is performed by using - transformation and -factorization methods. Both procedures are described and numerically compared. Computations are performed in the floating point environment.