The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Etant donnés deux entiers impairs, premiers entre eux et tels que , on étudie les suites d’entiers positifs telles que . Elles généralisent les suites classiques de Lucas et . Les propriétés des diviseurs premiers de pour donnent, via le calcul des Symboles de Legendre de certains modulo ceux-ci, une méthode efficace de détermination des carrés (resp. doubles, triples, ... de carrés) dans une suite . Ceci est appliqué aux équations Diophantiennes de la forme , lorsque est la...
Y. Bilu, G. Hanrot et P.M. Voutier ont montré que pour toute paire de Lucas ou de Lehmer et pour tout , les entiers, dits nombres de Lucas (ou de Lehmer) admettaient un diviseur primitif. L’objet de ce papier est de compléter la liste des nombres de Lucas et de Lehmer défectueux donnée par P.M. Voutier, afin d’en avoir une liste exhaustive.
A positive is called a balancing number if
We prove that there is no balancing number which is a term of the Lucas sequence.
We show that the only Lucas numbers which are factoriangular are and .
Let be a binary linear recurrence sequence that is represented by the Lucas sequences of the first and second kind, which are and , respectively. We show that the Diophantine equation has only finitely many solutions in , where , is even and . Furthermore, these solutions can be effectively determined by reducing such equation to biquadratic elliptic curves. Then, by a result of Baker (and its best improvement due to Hajdu and Herendi) related to the bounds of the integral points on...
Currently displaying 1 –
13 of
13