The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 41 – 60 of 90

Showing per page

Matchings in complete bipartite graphs and the r -Lah numbers

Gábor Nyul, Gabriella Rácz (2021)

Czechoslovak Mathematical Journal

We give a graph theoretic interpretation of r -Lah numbers, namely, we show that the r -Lah number n k r counting the number of r -partitions of an ( n + r ) -element set into k + r ordered blocks is just equal to the number of matchings consisting of n - k edges in the complete bipartite graph with partite sets of cardinality n and n + 2 r - 1 ( 0 k n , r 1 ). We present five independent proofs including a direct, bijective one. Finally, we close our work with a similar result for r -Stirling numbers of the second kind.

Nombres de Bell et somme de factorielles

Daniel Barsky, Bénali Benzaghou (2004)

Journal de Théorie des Nombres de Bordeaux

Dj. Kurepa a conjecturé que pour tout nombre premier impair, p , la somme n = 0 p - 1 n ! n’est pas divisible par p . Cette somme est reliée aux nombres de Bell qui apparaissent en combinatoire énumérative. Nous donnons une expression du n -ième nombre de Bell modulo p comme la trace de la puissance n -ième d’un élément fixe dans l’extension d’Artin-Schreier de degré p du corps premier à p éléments. Cette expression permet de démontrer la conjecture de Kurepa en la ramenant à un problème d’algèbre linéaire.

Currently displaying 41 – 60 of 90