The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Following the line of attack of La Bretèche, Browning and Peyre, we prove Manin's conjecture in its strong form conjectured by Peyre for a family of Châtelet surfaces which are defined as minimal proper smooth models of affine surfaces of the form
Y² - aZ² = F(X,1),
where a = -1, F ∈ ℤ[x₁,x₂] is a polynomial of degree 4 whose factorisation into irreducibles contains two non-proportional linear factors and a quadratic factor which is irreducible over ℚ [i]. This result...
A positive is called a balancing number if
We prove that there is no balancing number which is a term of the Lucas sequence.
Currently displaying 1 –
4 of
4