The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We explore numerically the eigenvalues of the hermitian formwhen . We improve on the existing upper bound, and produce a (conjectural) plot of the asymptotic distribution of its eigenvalues by exploiting fairly extensive computations. The main outcome is that this asymptotic density most probably exists but is not continuous with respect to the Lebesgue measure.
A sum of exponentials of the form , where the are distinct integers is called an idempotent trigonometric polynomial (because the convolution of with itself is ) or, simply, an idempotent. We show that for every and every set of the torus with there are idempotents concentrated on in the sense. More precisely, for each there is an explicitly calculated constant so that for each with and one can find an idempotent such that the ratio is greater than . This is in fact...
Currently displaying 1 –
13 of
13