The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a commutative ring with nonzero identity, let be the set of all ideals of and an expansion of ideals of defined by . We introduce the concept of -primary ideals in commutative rings. A proper ideal of is called a -primary ideal if whenever and , then or . Our purpose is to extend the concept of -ideals to -primary ideals of commutative rings. Then we investigate the basic properties of -primary ideals and also discuss the relations among -primary, -primary and...
Let and be commutative rings with unity, a ring homomorphism and an ideal of . Then the subring and of is called the amalgamation of with along with respect to . In this paper, we determine when is a (generalized) filter ring.
Currently displaying 1 –
6 of
6