The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 10 of 10

Showing per page

Un anneau de Prüfer

H. Lombardi (2010)

Actes des rencontres du CIRM

Let E be the ring of integer valued polynomials over . This ring is known to be a Prüfer domain. But it seems there does not exist an algorithm for inverting a nonzero finitely generated ideal of E . In this note we show how to obtain such an algorithm by deciphering a classical abstract proof that uses localisations of E at all prime ideals of E . This confirms a general program of deciphering abstract classical proofs in order to obtain algorithmic proofs.

Uppers to zero in R [ x ] and almost principal ideals

Keivan Borna, Abolfazl Mohajer-Naser (2013)

Czechoslovak Mathematical Journal

Let R be an integral domain with quotient field K and f ( x ) a polynomial of positive degree in K [ x ] . In this paper we develop a method for studying almost principal uppers to zero ideals. More precisely, we prove that uppers to zero divisorial ideals of the form I = f ( x ) K [ x ] R [ x ] are almost principal in the following two cases: – J , the ideal generated by the leading coefficients of I , satisfies J - 1 = R . – I - 1 as the R [ x ] -submodule of K ( x ) is of finite type. Furthermore we prove that for I = f ( x ) K [ x ] R [ x ] we have: – I - 1 K [ x ] = ( I : K ( x ) I ) . – If there exists p / q I - 1 - K [ x ] , then ( q , f ) 1 ...

Currently displaying 1 – 10 of 10

Page 1