The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
For a finite Coxeter group and a Coxeter element of ; the -Cambrian fan is a coarsening of the fan defined by the reflecting hyperplanes of . Its maximal cones are naturally
indexed by the -sortable elements of . The main result of this paper is that the known bijection cl between -sortable elements and -clusters induces a combinatorial isomorphism of fans. In particular, the -Cambrian fan is combinatorially isomorphic to the normal fan of the generalized
associahedron for . The rays...
Let be a field and a finite-dimensional -algebra of global dimension . We construct a triangulated category associated to which, if is hereditary, is triangle equivalent to the cluster category of . When is Hom-finite, we prove that it is 2-CY and endowed with a canonical cluster-tilting object. This new class of categories contains some of the stable categories of modules over a preprojective algebra studied by Geiss-Leclerc-Schröer and by Buan-Iyama-Reiten-Scott. Our results also...
The theory of Caldero-Chapoton algebras of Cerulli Irelli, Labardini-Fragoso and Schröer (2015) leads to a refinement of the notions of cluster variables and clusters, via so-called component clusters. We compare component clusters to classical clusters for the cluster algebra of an acyclic quiver. We propose a definition of mutation between component clusters and determine the mutation relations of component clusters for affine quivers. In the case of a wild quiver, we provide bounds for the size...
Currently displaying 1 –
3 of
3