The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 8 of 8

Showing per page

Faisceaux cohérents sur les courbes multiples.

Jean-Marc Drézet (2006)

Collectanea Mathematica

This paper is devoted to the study of coherent sheaves on non reduced curves that can be locally embedded in smooth surfaces. If Y is such a curve then there is a filtration C ⊂ C2 ⊂ ... ⊂ Cn = Y such that C is the reduced curve associated to Y, and for very P ∈ C there exists z ∈ OY,P such that (zi) is the ideal of Ci in OY,P. We define, using canonical filtrations, new invariants of coherent sheaves on Y: the generalized rank and degree, and use them to state a Riemann-Roch theorem for sheaves...

Fragmented deformations of primitive multiple curves

Jean-Marc Drézet (2013)

Open Mathematics

A primitive multiple curve is a Cohen-Macaulay irreducible projective curve Y that can be locally embedded in a smooth surface, and such that Y red is smooth. We study the deformations of Y to curves with smooth irreducible components, when the number of components is maximal (it is then the multiplicity n of Y). We are particularly interested in deformations to n disjoint smooth irreducible components, which are called fragmented deformations. We describe them completely. We give also a characterization...

Currently displaying 1 – 8 of 8

Page 1