The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 12 of 12

Showing per page

Sheaves associated to holomorphic first integrals

Alexis García Zamora (2000)

Annales de l'institut Fourier

Let : L T S be a foliation on a complex, smooth and irreducible projective surface S , assume admits a holomorphic first integral f : S 1 . If h 0 ( S , 𝒪 S ( - n 𝒦 S ) ) > 0 for some n 1 we prove the inequality: ( 2 n - 1 ) ( g - 1 ) h 1 ( S , ' - 1 ( - ( n - 1 ) K S ) ) + h 0 ( S , ' ) + 1 . If S is rational we prove that the direct image sheaves of the co-normal sheaf of under f are locally free; and give some information on the nature of their decomposition as direct sum of invertible sheaves.

Currently displaying 1 – 12 of 12

Page 1