The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 22

Showing per page

Cohomologie et K-théorie équivariantes des variétés de Bott-Samelson et des variétés de drapeaux

Matthieu Willems (2004)

Bulletin de la Société Mathématique de France

L’objet de cet article est de calculer la cohomologie et la K-théorie équivariantes des variétés de Bott-Samelson (théorèmes 3.3 et 4.3) et d’en déduire des résultats sur les variétés de drapeaux des groupes de Kac-Moody. Dans la section 3, on retrouve la formule de restriction aux points fixes de la base { ξ ^ w } w W de H T * ( G / B ) (théorème 3.9) prouvée par Sara Billey dans [4]. Dans la section 4, on donne l’expression explicite de la restriction aux points fixes de la base { ψ ^ w } w W de K T ( G / B ) définie par Kostant et Kumar dans...

Compactifications of moduli spaces of (semi)stable bundles on singular curves: two points of view.

Montserrat Teixidor i Bigas (1998)

Collectanea Mathematica

Moduli spaces of vector bundles on families of non-singular curves are usually compactified by considering (slope)semistable bundles on stable curves. Alternatively, one could consider Hilbert-stable curves in Grassmannians. We study some properties of the latter and compare them with similar properties of curves coming from the former compactification. This leads to a new interpretation of the moduli space of (semi)stable torsion-free sheaves on a fixed nodal curve. One can present it as a quotient...

Conditions de régularité et éclatements

Jean-Pierre Henry, Michel Merle (1987)

Annales de l'institut Fourier

On décrit trois types de conditions permettant de stratifier un morphisme analytique complexe f  :1) différentielles, à la Thom-Whitney,2) géométriques, demandant l’équidimensionnalité de certains diviseurs exceptionnels obtenus à partir de l’espace conormal relatif ou de la modification de Nash relative de f ,3) numériques, exigeant la constance d’invariants de f le long des states.On donne une méthode générale permettant d’exprimer et de démontrer des équivalences entre des conditions de chaque...

Contraction par Frobenius de G -modules

Michel Gros, Masaharu Kaneda (2011)

Annales de l’institut Fourier

Soit G un groupe algébrique semi-simple simplement connexe défini sur un corps algébriquement clos 𝕜 de caractéristique positive. Nous donnons une nouvelle preuve de l’existence d’un scindage de Frobenius de la variété des drapeaux de G ainsi que de la nature G -équivariante de celui-ci. L’outil principal est un scindage de l’endomorphisme de Frobenius défini sur toute l’algèbre des distributions de G qui permet de « détordre » la structure des G -modules.

Currently displaying 1 – 20 of 22

Page 1 Next