The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We express the Euler-Poincaré characteristic of a semi-algebraic set, which is the intersection of a non-singular complete intersection with two polynomial inequalities, in terms of the signatures of appropriate bilinear symmetric forms.
Let K,R be an algebraically closed field (of characteristic zero) and a real closed field respectively with K=R(√(-1)). We show that every K-analytic set definable in an o-minimal expansion of R can be locally approximated by a sequence of K-Nash sets.
Given a compact nonsingular real algebraic variety we study the algebraic cohomology classes given by algebraic cycles algebraically equivalent to zero.
We construct for a real algebraic variety (or more generally for a scheme essentially of
finite type over a field of characteristic ) complexes of algebraically and -
algebraically constructible chains. We study their functoriality and compute their
homologies for affine and projective spaces. Then we show that the lagrangian
algebraically constructible cycles of the cotangent bundle are exactly the characteristic
cycles of the algebraically constructible functions.
Les amibesdes variétés algébriques dans sont les images de ces variétés par l’application des moments , . Des résultats obtenus par G. Mikhalkin montrent l’utilité des amibes pour l’étude des variétés algébriques réelles et complexes. Les amibes peuvent être déformées en des complexes polyédraux appelésvariétés algébriques tropicales. Cette déformation permet, en particulier, de calculer les invariants de Gromov-Witten du plan projectif et d’autres surfaces toriques en dénombrant des courbes...
Currently displaying 21 –
40 of
50