The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 2 of 2

Showing per page

Relative exactness modulo a polynomial map and algebraic ( p , + ) -actions

Philippe Bonnet (2003)

Bulletin de la Société Mathématique de France

Let F = ( f 1 , ... , f q ) be a polynomial dominating map from n to  q . We study the quotient 𝒯 1 ( F ) of polynomial 1-forms that are exact along the generic fibres of F , by 1-forms of type d R + a i d f i , where R , a 1 , ... , a q are polynomials. We prove that 𝒯 1 ( F ) is always a torsion [ t 1 , ... , t q ] -module. Then we determine under which conditions on F we have 𝒯 1 ( F ) = 0 . As an application, we study the behaviour of a class of algebraic ( p , + ) -actions on n , and determine in particular when these actions are trivial.

Currently displaying 1 – 2 of 2

Page 1