Displaying 1981 – 2000 of 3007

Showing per page

Partial choice functions for families of finite sets

Eric J. Hall, Saharon Shelah (2013)

Fundamenta Mathematicae

Let m ≥ 2 be an integer. We show that ZF + “Every countable set of m-element sets has an infinite partial choice function” is not strong enough to prove that every countable set of m-element sets has a choice function, answering an open question from . (Actually a slightly stronger result is obtained.) The independence result in the case where m = p is prime is obtained by way of a permutation (Fraenkel-Mostowski) model of ZFA, in which the set of atoms (urelements) has the structure of a vector...

Partial sum of eigenvalues of random graphs

Israel Rocha (2020)

Applications of Mathematics

Let G be a graph on n vertices and let λ 1 λ 2 ... λ n be the eigenvalues of its adjacency matrix. For random graphs we investigate the sum of eigenvalues s k = i = 1 k λ i , for 1 k n , and show that a typical graph has s k ( e ( G ) + k 2 ) / ( 0 . 99 n ) 1 / 2 , where e ( G ) is the number of edges of G . We also show bounds for the sum of eigenvalues within a given range in terms of the number of edges. The approach for the proofs was first used in Rocha (2020) to bound the partial sum of eigenvalues of the Laplacian matrix.

Patterns with several multiple eigenvalues

J. Dorsey, C.R. Johnson, Z. Wei (2014)

Special Matrices

Identified are certain special periodic diagonal matrices that have a predictable number of paired eigenvalues. Since certain symmetric Toeplitz matrices are special cases, those that have several multiple 5 eigenvalues are also investigated further. This work generalizes earlier work on response matrices from circularly symmetric models.

Pentadiagonal Companion Matrices

Brydon Eastman, Kevin N. Vander Meulen (2016)

Special Matrices

The class of sparse companion matrices was recently characterized in terms of unit Hessenberg matrices. We determine which sparse companion matrices have the lowest bandwidth, that is, we characterize which sparse companion matrices are permutationally similar to a pentadiagonal matrix and describe how to find the permutation involved. In the process, we determine which of the Fiedler companion matrices are permutationally similar to a pentadiagonal matrix. We also describe how to find a Fiedler...

Currently displaying 1981 – 2000 of 3007