The search session has expired. Please query the service again.

Displaying 2001 – 2020 of 3024

Showing per page

Partial sum of eigenvalues of random graphs

Israel Rocha (2020)

Applications of Mathematics

Let G be a graph on n vertices and let λ 1 λ 2 ... λ n be the eigenvalues of its adjacency matrix. For random graphs we investigate the sum of eigenvalues s k = i = 1 k λ i , for 1 k n , and show that a typical graph has s k ( e ( G ) + k 2 ) / ( 0 . 99 n ) 1 / 2 , where e ( G ) is the number of edges of G . We also show bounds for the sum of eigenvalues within a given range in terms of the number of edges. The approach for the proofs was first used in Rocha (2020) to bound the partial sum of eigenvalues of the Laplacian matrix.

Patterns with several multiple eigenvalues

J. Dorsey, C.R. Johnson, Z. Wei (2014)

Special Matrices

Identified are certain special periodic diagonal matrices that have a predictable number of paired eigenvalues. Since certain symmetric Toeplitz matrices are special cases, those that have several multiple 5 eigenvalues are also investigated further. This work generalizes earlier work on response matrices from circularly symmetric models.

Pentadiagonal Companion Matrices

Brydon Eastman, Kevin N. Vander Meulen (2016)

Special Matrices

The class of sparse companion matrices was recently characterized in terms of unit Hessenberg matrices. We determine which sparse companion matrices have the lowest bandwidth, that is, we characterize which sparse companion matrices are permutationally similar to a pentadiagonal matrix and describe how to find the permutation involved. In the process, we determine which of the Fiedler companion matrices are permutationally similar to a pentadiagonal matrix. We also describe how to find a Fiedler...

Perimeter preserver of matrices over semifields

Seok-Zun Song, Kyung-Tae Kang, Young Bae Jun (2006)

Czechoslovak Mathematical Journal

For a rank- 1 matrix A = 𝐚 𝐛 t , we define the perimeter of A as the number of nonzero entries in both 𝐚 and 𝐛 . We characterize the linear operators which preserve the rank and perimeter of rank- 1 matrices over semifields. That is, a linear operator T preserves the rank and perimeter of rank- 1 matrices over semifields if and only if it has the form T ( A ) = U A V , or T ( A ) = U A t V with some invertible matrices U and V.

Perimeter preservers of nonnegative integer matrices

Seok-Zun Song, Kyung-Tae Kang, Sucheol Yi (2004)

Commentationes Mathematicae Universitatis Carolinae

We investigate the perimeter of nonnegative integer matrices. We also characterize the linear operators which preserve the rank and perimeter of nonnegative integer matrices. That is, a linear operator T preserves the rank and perimeter of rank- 1 matrices if and only if it has the form T ( A ) = P ( A B ) Q , or T ( A ) = P ( A t B ) Q with appropriate permutation matrices P and Q and positive integer matrix B , where denotes Hadamard product.

Currently displaying 2001 – 2020 of 3024