Displaying 381 – 400 of 452

Showing per page

An iterative algorithm for computing the cycle mean of a Toeplitz matrix in special form

Peter Szabó (2013)

Kybernetika

The paper presents an iterative algorithm for computing the maximum cycle mean (or eigenvalue) of n × n triangular Toeplitz matrix in max-plus algebra. The problem is solved by an iterative algorithm which is applied to special cycles. These cycles of triangular Toeplitz matrices are characterized by sub-partitions of n - 1 .

An iterative algorithm for testing solvability of max-min interval systems

Helena Myšková (2012)

Kybernetika

This paper is dealing with solvability of interval systems of linear equations in max-min algebra. Max-min algebra is the algebraic structure in which classical addition and multiplication are replaced by and , where a b = max { a , b } , a b = min { a , b } . The notation 𝔸 x = 𝕓 represents an interval system of linear equations, where 𝔸 = [ A ̲ , A ¯ ] and 𝕓 = [ b ̲ , b ¯ ] are given interval matrix and interval vector, respectively. We can define several types of solvability of interval systems. In this paper, we define the T4 and T5 solvability and give necessary and...

An Iterative Method for the Matrix Principal n-th Root

Lakić, Slobodan (1995)

Serdica Mathematical Journal

In this paper we give an iterative method to compute the principal n-th root and the principal inverse n-th root of a given matrix. As we shall show this method is locally convergent. This method is analyzed and its numerical stability is investigated.

An operator-theoretic approach to truncated moment problems

Raúl Curto (1997)

Banach Center Publications

We survey recent developments in operator theory and moment problems, beginning with the study of quadratic hyponormality for unilateral weighted shifts, its connections with truncated Hamburger, Stieltjes, Hausdorff and Toeplitz moment problems, and the subsequent proof that polynomially hyponormal operators need not be subnormal. We present a general elementary approach to truncated moment problems in one or several real or complex variables, based on matrix positivity and extension. Together...

An optimal matching problem

Ivar Ekeland (2005)

ESAIM: Control, Optimisation and Calculus of Variations

Given two measured spaces ( X , μ ) and ( Y , ν ) , and a third space Z , given two functions u ( x , z ) and v ( x , z ) , we study the problem of finding two maps s : X Z and t : Y Z such that the images s ( μ ) and t ( ν ) coincide, and the integral X u ( x , s ( x ) ) d μ - Y v ( y , t ( y ) ) d ν is maximal. We give condition on u and v for which there is a unique solution.

Currently displaying 381 – 400 of 452