Displaying 101 – 120 of 229

Showing per page

The minimum, diagonal element of a positive matrix

M. Smyth, T. West (1998)

Studia Mathematica

Properties of the minimum diagonal element of a positive matrix are exploited to obtain new bounds on the eigenvalues thus exhibiting a spectral bias along the positive real axis familiar in Perron-Frobenius theory.

The Minimum Spectral Radius of Signless Laplacian of Graphs with a Given Clique Number

Li Su, Hong-Hai Li, Jing Zhang (2014)

Discussiones Mathematicae Graph Theory

In this paper we observe that the minimal signless Laplacian spectral radius is obtained uniquely at the kite graph PKn−ω,ω among all connected graphs with n vertices and clique number ω. In addition, we show that the spectral radius μ of PKm,ω (m ≥ 1) satisfies [...] More precisely, for m > 1, μ satisfies the equation [...] where [...] and [...] . At last the spectral radius μ(PK∞,ω) of the infinite graph PK∞,ω is also discussed.

The P 0 -matrix completion problem.

Choi, Ji Young, DeAlba, Luz Maria, Hogben, Leslie, Maxwell, Mandi S., Wangsness, Amy (2002)

ELA. The Electronic Journal of Linear Algebra [electronic only]

Currently displaying 101 – 120 of 229