The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We describe the stable module categories of the self-injective finite-dimensional algebras of finite representation type over an algebraically closed field which are Calabi-Yau (in the sense of Kontsevich).
Let G be a group, R a G-graded ring and X a right G-set. We study functors between categories of modules graded by G-sets, continuing the work of [M]. As an application we obtain generalizations of Cohen-Montgomery Duality Theorems by categorical methods. Then we study when some functors introduced in [M] (which generalize some functors ocurring in [D1], [D2] and [NRV]) are separable. Finally we obtain an application to the study of the weak dimension of a group graded ring.
The purpose of this paper is to further the study of countably thick modules via weak injectivity. Among others, for some classes of modules in we study when direct sums of modules from satisfies a property in . In particular, we get characterization of locally countably thick modules, a generalization of locally q.f.d. modules.
Currently displaying 1 –
11 of
11