The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A celebrated result by S. Priddy states the Koszulness of any locally finite homogeneous PBW-algebra, i.e. a homogeneous graded algebra having a Poincaré-Birkhoff-Witt basis. We find sufficient conditions for a non-locally finite homogeneous PBW-algebra to be Koszul, which allows us to completely determine the cohomology of the universal Steenrod algebra at any prime.
2000 Mathematics Subject Classification: Primary 81R50, 16W50, 16S36, 16S37.Let k be a field and X be a set of n elements. We introduce and study a class of quadratic k-algebras called quantum binomial algebras.
Our main result shows that such an algebra A defines a solution of the classical Yang-Baxter equation (YBE), if and only if its Koszul dual A!
is Frobenius of dimension n, with a regular socle and for each x, y ∈ X an equality of the type xyy = αzzt, where α ∈ k {0, and z, t ∈ X is satisfied...
Using derived categories, we develop an alternative approach to defining Koszulness for positively graded algebras where the degree zero part is not necessarily semisimple.
This is an extended version of a talk given by the author at the conference “Algebra and Topology in Interaction” on the occasion of the 70th Anniversary of D.B. Fuchs at UC Davis in September 2009. It is a brief survey of an area originated around 1995 by I. Gelfand and the speaker.
We prove that blocks of the general linear supergroup are Morita equivalent to a limiting version of Khovanov's diagram algebra. We deduce that blocks of the general linear supergroup are Koszul.
We consider the socle deformations arising from formal deformations of a class of Koszul self-injective special biserial algebras which occur in the study of the Drinfeld double of the generalized Taft algebras. We show, for these deformations, that the Hochschild cohomology ring modulo nilpotence is a finitely generated commutative algebra of Krull dimension 2.
Given a finite-dimensional algebra, we present sufficient conditions on the projective presentation of the algebra modulo its radical for a tilted algebra to be a Koszul algebra and for the endomorphism ring of a tilting module to be a quasi-Koszul algebra. One condition we impose is that the algebra has global dimension no greater than 2. One of the main techniques is studying maps between the direct summands of the tilting module. Some applications are given. We also show that a Brenner-Butler...
A fundamental result of Beĭlinson–Ginzburg–Soergel states that on flag varieties and related spaces, a certain modified version of the category of -adic perverse sheaves exhibits a phenomenon known as Koszul duality. The modification essentially consists of discarding objects whose stalks carry a nonsemisimple action of Frobenius. In this paper, we prove that a number of common sheaf functors (various pull-backs and push-forwards) induce corresponding functors on the modified category or its triangulated...
The correspondence between the category of modules over a graded algebra and the category of graded modules over its Yoneda algebra was studied in [8] by means of algebras; this relation is very well understood for Koszul algebras (see for example [5],[6]). It is of interest to look for cases such that there exists a duality generalizing the Koszul situation. In this paper we will study N-Koszul algebras [1], [7], [9] for which such a duality exists.
Let be a standard Koszul standardly stratified algebra and an -module. The paper investigates conditions which imply that the module over the Yoneda extension algebra is filtered by standard modules. In particular, we prove that the Yoneda extension algebra of is also standardly stratified. This is a generalization of similar results on quasi-hereditary and on graded standardly stratified algebras.
This paper studies the Hochschild cohomology of finite-dimensional monomial algebras. If Λ = K/I with I an admissible monomial ideal, then we give sufficient conditions for the existence of an embedding of into the Hochschild cohomology ring HH*(Λ). We also introduce stacked algebras, a new class of monomial algebras which includes Koszul and D-Koszul monomial algebras. If Λ is a stacked algebra, we prove that , where is the ideal in HH*(Λ) generated by the homogeneous nilpotent elements. In...
Dans [8], les auteurs ont construit une résolution injective minimale d’un module instable dans la catégorie des modules instables modulo . A partir de cette résolution, un résultat de type conjecture de Segal a été obtenu pour un certain spectre de Thom. Le but de cet article est de refaire ces résultats pour les premiers impairs. Etant donné un premier impair , on construit dans ce travail un complexe de Koszul dans la catégorie des modules instables sur l’algèbre de Steenrod modulo . Une résolution...
Currently displaying 1 –
17 of
17