The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 3

Displaying 41 – 52 of 52

Showing per page

Universal objects in quasiconstructs

R. Rother (2000)

Commentationes Mathematicae Universitatis Carolinae

The general theory of J’onsson-classes is generalized to strongly smooth quasiconstructs in such a way that it also allows the construction of universal categories. One example of the theory is the existence of a concrete universal category over every base category. Properties are given which are (under certain conditions) equivalent to the existence of homogeneous universal objects. Thereby, we disprove the existence of a homogeneous C-universal category. The notion of homogeneity is strengthened...

Universality of separoids

Jaroslav Nešetřil, Ricardo Strausz (2006)

Archivum Mathematicum

A separoid is a symmetric relation 2 S 2 defined on disjoint pairs of subsets of a given set S such that it is closed as a filter in the canonical partial order induced by the inclusion (i.e., A B A ' B ' A A ' and B B ' ). We introduce the notion of homomorphism as a map which preserve the so-called “minimal Radon partitions” and show that separoids, endowed with these maps, admits an embedding from the category of all finite graphs. This proves that separoids constitute a countable universal partial order. Furthermore,...

Currently displaying 41 – 52 of 52

Previous Page 3