Convenient vector spaces embed into the Cahiers topos
In this paper we study big convexity theories, that is convexity theories that are not necessarily bounded. As in the bounded case (see [4]) such a convexity theory Γ gives rise to the category ΓC of (left) Γ-convex modules. This is an equationally presentable category, and we prove that it is indeed an algebraic category over Set. We also introduce the category ΓAlg of Γ-convex algebras and show that the category Frm of frames is isomorphic to the category of associative, commutative, idempotent...
The paper introduces coproducts in categories without uniqueness of cod and dom. It is proven that set-theoretical disjoint union is the coproduct in the category Ens [9].
The question of how to combine monads arises naturally in many areas with much recent interest focusing on the coproduct of two monads. In general, the coproduct of arbitrary monads does not always exist. Although a rather general construction was given by Kelly [Bull. Austral. Math. Soc. 22 (1980) 1–83], its generality is reflected in its complexity which limits the applicability of this construction. Following our own research [C. Lüth and N. Ghani, Lect. Notes Artif. Intell. 2309 (2002) 18–32],...
The question of how to combine monads arises naturally in many areas with much recent interest focusing on the coproduct of two monads. In general, the coproduct of arbitrary monads does not always exist. Although a rather general construction was given by Kelly [Bull. Austral. Math. Soc.22 (1980) 1–83], its generality is reflected in its complexity which limits the applicability of this construction. Following our own research [C. Lüth and N. Ghani, Lect. Notes Artif. Intell.2309 (2002)...
In this paper, we show the existence of copure injective preenvelopes over noetherian rings and copure flat preenvelopes over commutative artinian rings. We use this to characterize -Gorenstein rings. As a consequence, if the full subcategory of strongly copure injective (respectively flat) modules over a left and right noetherian ring has cokernels (respectively kernels), then is -Gorenstein.
There are two mistakes in the referred paper. One is ridiculous and one is significant. But none is serious.