Crossed squares and 2-crossed modules of commutative algebras.
In this paper the concepts of mixed cartesian square and quasi-cocartesian square, already known in the category of groups, are adapted to the category of Lie algebras. These concepts can be used in the study of the obstructions of Lie algebra extensions in the same way that Wu has studied the obstructions of group extensions.
Dans ce papier, on définit, dans le cadre des algèbres graduées avec symétries la notion de cup -produit introduite par Steenrod dans [11]. En utilisant le cup 1-produit, on montre que la cohomologie associée à une algèbre graduée avec symétries est une algèbre de Gerstenhaber.
We review recent progress in the study of cyclic cohomology of Hopf algebras, extended Hopf algebras, invariant cyclic homology, and Hopf-cyclic homology with coefficients, starting with the pioneering work of Connes-Moscovici.
We endow the de Rham cohomology of any Poisson or Jacobi manifold with a natural homotopy Frobenius manifold structure. This result relies on a minimal model theorem for multicomplexes and a new kind of a Hodge degeneration condition.