Displaying 801 – 820 of 3013

Showing per page

Distinguishing derived equivalence classes using the second Hochschild cohomology group

Deena Al-Kadi (2010)

Colloquium Mathematicae

We study the second Hochschild cohomology group of the preprojective algebra of type D₄ over an algebraically closed field K of characteristic 2. We also calculate the second Hochschild cohomology group of a non-standard algebra which arises as a socle deformation of this preprojective algebra and so show that the two algebras are not derived equivalent. This answers a question raised by Holm and Skowroński.

Distributive laws and Koszulness

Martin Markl (1996)

Annales de l'institut Fourier

Distributive law is a way to compose two algebraic structures, say 𝒰 and 𝒱 , into a more complex algebraic structure 𝒲 . The aim of this paper is to understand distributive laws in terms of operads. The central result says that if the operads corresponding respectively to 𝒰 and 𝒱 are Koszul, then the operad corresponding to 𝒲 is Koszul as well. An application to the cohomology of configuration spaces is given.

Distributivity law for the normal triples in the category of compacta and lifting of functors to the categories of algebras

Michael M. Zarichnyi (1991)

Commentationes Mathematicae Universitatis Carolinae

We investigate the triples in the category of compacta whose functorial parts are normal functors in the sense of E.V. Shchepin (normal triples). The problem of lifting of functors to the categories of algebras of the normal triples is considered. The distributive law for normal triples is completely described.

Currently displaying 801 – 820 of 3013