Displaying 1821 – 1840 of 3021

Showing per page

On nonstandard tame selfinjective algebras having only periodic modules

Jerzy Białkowski, Thorsten Holm, Andrzej Skowroński (2003)

Colloquium Mathematicae

We investigate degenerations and derived equivalences of tame selfinjective algebras having no simply connected Galois coverings but the stable Auslander-Reiten quiver consisting only of tubes, discovered recently in [4].

On pure quotients and pure subobjects

Jiří Adámek, Jiří Rosický (2004)

Czechoslovak Mathematical Journal

In the theory of accessible categories, pure subobjects, i.e. filtered colimits of split monomorphisms, play an important role. Here we investigate pure quotients, i.e., filtered colimits of split epimorphisms. For example, in abelian, finitely accessible categories, these are precisely the cokernels of pure subobjects, and pure subobjects are precisely the kernels of pure quotients.

On quasitilted algebras which are one-point extensions of hereditary algebras

Dieter Happel, Inger Slungård (1999)

Colloquium Mathematicae

Quasitilted algebras have been introduced as a proper generalization of tilted algebras. In an earlier article we determined necessary conditions for one-point extensions of decomposable finite-dimensional hereditary algebras to be quasitilted and not tilted. In this article we study algebras satisfying these necessary conditions in order to investigate to what extent the conditions are sufficient.

Currently displaying 1821 – 1840 of 3021