The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Suppose is a commutative ring with identity of prime characteristic and is an arbitrary abelian -group. In the present paper, a basic subgroup and a lower basic subgroup of the -component and of the factor-group of the unit group in the modular group algebra are established, in the case when is weakly perfect. Moreover, a lower basic subgroup and a basic subgroup of the normed -component and of the quotient group are given when is perfect and is arbitrary whose is -divisible....
Let be a normed Sylow -subgroup in a group ring of an abelian group with -component and a -basic subgroup over a commutative unitary ring with prime characteristic . The first central result is that is basic in and is -basic in , and is basic in and is -basic in , provided in both cases is -divisible and is such that its maximal perfect subring has no nilpotents whenever is natural. The second major result is that is -basic in and is -basic in ,...
We give homological conditions on groups such that whenever the conditions hold for a group G, there is a bound on the orders of finite subgroups of G. This extends a result of P. H. Kropholler. We also suggest a weaker condition under which the same conclusion might hold.
Currently displaying 1 –
4 of
4