The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 33

Showing per page

Geometric subgroups of surface braid groups

Luis Paris, Dale Rolfsen (1999)

Annales de l'institut Fourier

Let M be a surface, let N be a subsurface, and let n m be two positive integers. The inclusion of N in M gives rise to a homomorphism from the braid group B n N with n strings on N to the braid group B m M with m strings on M . We first determine necessary and sufficient conditions that this homomorphism is injective, and we characterize the commensurator, the normalizer and the centralizer of π 1 N in π 1 M . Then we calculate the commensurator, the normalizer and the centralizer of B n N in B m M for large surface braid...

Groups whose all subgroups are ascendant or self-normalizing

Leonid Kurdachenko, Javier Otal, Alessio Russo, Giovanni Vincenzi (2011)

Open Mathematics

This paper studies groups G whose all subgroups are either ascendant or self-normalizing. We characterize the structure of such G in case they are locally finite. If G is a hyperabelian group and has the property, we show that every subgroup of G is in fact ascendant provided G is locally nilpotent or non-periodic. We also restrict our study replacing ascendant subgroups by permutable subgroups, which of course are ascendant [Stonehewer S.E., Permutable subgroups of infinite groups, Math. Z., 1972,...

Groups whose proper subgroups are Baer-by-Chernikov or Baer-by-(finite rank)

Abdelhafid Badis, Nadir Trabelsi (2011)

Open Mathematics

Our main result is that a locally graded group whose proper subgroups are Baer-by-Chernikov is itself Baer-by-Chernikov. We prove also that a locally (soluble-by-finite) group whose proper subgroups are Baer-by-(finite rank) is itself Baer-by-(finite rank) if either it is locally of finite rank but not locally finite or it has no infinite simple images.

Groups with every subgroup ascendant-by-finite

Sergio Camp-Mora (2013)

Open Mathematics

A subgroup H of a group G is called ascendant-by-finite in G if there exists a subgroup K of H such that K is ascendant in G and the index of K in H is finite. It is proved that a locally finite group with every subgroup ascendant-by-finite is locally nilpotent-by-finite. As a consequence, it is shown that the Gruenberg radical has finite index in the whole group.

Groups with many nearly normal subgroups

Maria De Falco (2001)

Bollettino dell'Unione Matematica Italiana

Un sottogruppo H di un gruppo G si dice nearly normal se ha indice finito nella sua chiusura normale H G . In questa nota si caratterizzano i gruppi in cui ogni sottogruppo che non sia nearly normal soddisfa una fissata condizione finitaria χ per diverse scelte naturali della proprietà χ .

Currently displaying 1 – 20 of 33

Page 1 Next