The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A θ-pair for a maximal subgroup M of a group G is a pair (A, B) of subgroups such that B is a maximal G-invariant subgroup of A with B but not A contained in M. θ-pairs are considered here in some groups having supersoluble maximal subgroups.
The notions of nearly-maximal and near Frattini subgroups considered by J.B. Riles in [20] and the natural related notions are characterized for abelian groups.
Given a class of finite groups and a finite group , the authors study the subgroup intersection of maximal subgroups that do not belong to .
Currently displaying 1 –
20 of
75