Displaying 1241 – 1260 of 3839

Showing per page

Group C*-algebras satisfying Kadison's conjecture

Rachid El Harti, Paulo R. Pinto (2011)

Banach Center Publications

We tackle R. V. Kadison’s similarity problem (i.e. any bounded representation of any unital C*-algebra is similar to a *-representation), paying attention to the class of C*-unitarisable groups (those groups G for which the full group C*-algebra C*(G) satisfies Kadison’s problem) and thereby we establish some stability results for Kadison’s problem. Namely, we prove that A m i n B inherits the similarity problem from those of the C*-algebras A and B, provided B is also nuclear. Then we prove that G/Γ is...

Group reflection and precompact paratopological groups

Mikhail Tkachenko (2013)

Topological Algebra and its Applications

We construct a precompact completely regular paratopological Abelian group G of size (2ω)+ such that all subsets of G of cardinality ≤ 2ω are closed. This shows that Protasov’s theorem on non-closed discrete subsets of precompact topological groups cannot be extended to paratopological groups. We also prove that the group reflection of the product of an arbitrary family of paratopological (even semitopological) groups is topologically isomorphic to the product of the group reflections of the factors,...

Group Structures and Rectifiability in Powers of Spaces

G. J. Ridderbos (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

We prove that if some power of a space X is rectifiable, then X π w ( X ) is rectifiable. It follows that no power of the Sorgenfrey line is a topological group and this answers a question of Arhangel’skiĭ. We also show that in Mal’tsev spaces of point-countable type, character and π-character coincide.

Groupes de Ping-Pong et comptage

Xavier Thirion (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

Dans cet article, nous étudions les propriétés asymptotiques d’une large classe de sous-groupe discrets du groupe linéaire réel : les groupes de Ping-Pong. Nous décrivons leur action sur l’espace projectif réel et le comportement à l’infini de leur fonction de comptage.

Groupes de Schottky et comptage

Jean-François Quint (2005)

Annales de l’institut Fourier

Soient X un espace symétrique de type non compact et Γ un groupe discret d’isométries de X du type de Schottky. Dans cet article, nous donnons des équivalents des fonctions orbitales de comptage pour l’action de Γ sur X .

Currently displaying 1241 – 1260 of 3839