The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 1861 – 1880 of 3843

Showing per page

Non-abelian extensions of infinite-dimensional Lie groups

Karl-Hermann Neeb (2007)

Annales de l’institut Fourier

In this article we study non-abelian extensions of a Lie group G modeled on a locally convex space by a Lie group N . The equivalence classes of such extension are grouped into those corresponding to a class of so-called smooth outer actions S of G on N . If S is given, we show that the corresponding set Ext ( G , N ) S of extension classes is a principal homogeneous space of the locally smooth cohomology group H s s 2 ( G , Z ( N ) ) S . To each S a locally smooth obstruction class χ ( S ) in a suitably defined cohomology group H s s 3 ( G , Z ( N ) ) S is defined....

Non-abelian group structure on the Urysohn universal space

Michal Doucha (2015)

Fundamenta Mathematicae

We prove that there exists a non-abelian group structure on the Urysohn universal metric space. More precisely, we introduce a variant of the Graev metric that enables us to construct a free group with countably many generators equipped with a two-sided invariant metric that is isometric to the rational Urysohn space. We list several related open problems.

Currently displaying 1861 – 1880 of 3843