The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 2181 – 2200 of 4583

Showing per page

Nonlinear Heat Equation with a Fractional Laplacian in a Disk

Vladimir Varlamov (1999)

Colloquium Mathematicae

For the nonlinear heat equation with a fractional Laplacian u t + ( - Δ ) α / 2 u = u 2 , 1 < α ≤ 2, the first initial-boundary value problem in a disk is considered. Small initial conditions, homogeneous boundary conditions, and periodicity conditions in the angular coordinate are imposed. Existence and uniqueness of a global-in-time solution is proved, and the solution is constructed in the form of a series of eigenfunctions of the Laplace operator in the disk. First-order long-time asymptotics of the solution is obtained....

Nonlinear Implicit Hadamard’s Fractional Differential Equationswith Delay in Banach Space

Mouffak Benchohra, Soufyane Bouriah, Jamal E. Lazreg, Juan J. Nieto (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In this paper, we establish sufficient conditions for the existence of solutions for nonlinear Hadamard-type implicit fractional differential equations with finite delay. The proof of the main results is based on the measure of noncompactness and the Darbo’s and Mönch’s fixed point theorems. An example is included to show the applicability of our results.

Nonlocal Poincaré inequalities on Lie groups with polynomial volume growth and Riemannian manifolds

Emmanuel Russ, Yannick Sire (2011)

Studia Mathematica

Let G be a real connected Lie group with polynomial volume growth endowed with its Haar measuredx. Given a C² positive bounded integrable function M on G, we give a sufficient condition for an L² Poincaré inequality with respect to the measure M(x)dx to hold on G. We then establish a nonlocal Poincaré inequality on G with respect to M(x)dx. We also give analogous Poincaré inequalities on Riemannian manifolds and deal with the case of Hardy inequalities.

Nonoscillatory solutions of discrete fractional order equations with positive and negative terms

Jehad Alzabut, Said Rezk Grace, A. George Maria Selvam, Rajendran Janagaraj (2023)

Mathematica Bohemica

This paper aims at discussing asymptotic behaviour of nonoscillatory solutions of the forced fractional difference equations of the form Δ γ u ( κ ) + Θ [ κ + γ , w ( κ + γ ) ] = Φ ( κ + γ ) + Υ ( κ + γ ) w ν ( κ + γ ) + Ψ [ κ + γ , w ( κ + γ ) ] , κ 1 - γ , u 0 = c 0 , where 1 - γ = { 1 - γ , 2 - γ , 3 - γ , } , 0 < γ 1 , Δ γ is a Caputo-like fractional difference operator. Three cases are investigated by using some salient features of discrete fractional calculus and mathematical inequalities. Examples are presented to illustrate the validity of the theoretical results.

Nonparametric recursive aggregation process

Elena Tsiporkova, Veselka Boeva (2004)

Kybernetika

In this work we introduce a nonparametric recursive aggregation process called Multilayer Aggregation (MLA). The name refers to the fact that at each step the results from the previous one are aggregated and thus, before the final result is derived, the initial values are subjected to several layers of aggregation. Most of the conventional aggregation operators, as for instance weighted mean, combine numerical values according to a vector of weights (parameters). Alternatively, the MLA operators...

Currently displaying 2181 – 2200 of 4583