The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 2621 – 2640 of 4583

Showing per page

On Henstock-Kurzweil method to Stratonovich integral

Haifeng Yang, Tin Lam Toh (2016)

Mathematica Bohemica

We use the general Riemann approach to define the Stratonovich integral with respect to Brownian motion. Our new definition of Stratonovich integral encompass the classical Stratonovich integral and more importantly, satisfies the ideal Itô formula without the “tail” term, that is, f ( W t ) = f ( W 0 ) + 0 t f ' ( W s ) d W s . Further, the condition on the integrands in this paper is weaker than the classical one.

On homeomorphic and diffeomorphic solutions of the Abel equation on the plane

Zbigniew Leśniak (1993)

Annales Polonici Mathematici

We consider the Abel equation φ[f(x)] = φ(x) + a on the plane ℝ², where f is a free mapping (i.e. f is an orientation preserving homeomorphism of the plane onto itself with no fixed points). We find all its homeomorphic and diffeomorphic solutions φ having positive Jacobian. Moreover, we give some conditions which are equivalent to f being conjugate to a translation.

On ideal equal convergence

Rafał Filipów, Marcin Staniszewski (2014)

Open Mathematics

We consider ideal equal convergence of a sequence of functions. This is a generalization of equal convergence introduced by Császár and Laczkovich [Császár Á., Laczkovich M., Discrete and equal convergence, Studia Sci. Math. Hungar., 1975, 10(3–4), 463–472]. Our definition of ideal equal convergence encompasses two different kinds of ideal equal convergence introduced in [Das P., Dutta S., Pal S.K., On and *-equal convergence and an Egoroff-type theorem, Mat. Vesnik, 2014, 66(2), 165–177]_and [Filipów...

On indefinite BV-integrals

Donatella Bongiorno, Udayan B. Darji, Washek Frank Pfeffer (2000)

Commentationes Mathematicae Universitatis Carolinae

We present an example of a locally BV-integrable function in the real line whose indefinite integral is not the sum of a locally absolutely continuous function and a function that is Lipschitz at all but countably many points.

On infinite composition of affine mappings

László Máté (1999)

Fundamenta Mathematicae

 Let F i = 1 , . . . , N be affine mappings of n . It is well known that if there exists j ≤ 1 such that for every σ 1 , . . . , σ j 1 , . . . , N the composition (1) F σ 1 . . . F σ j is a contraction, then for any infinite sequence σ 1 , σ 2 , . . . 1 , . . . , N and any z n , the sequence (2) F σ 1 . . . F σ n ( z ) is convergent and the limit is independent of z. We prove the following converse result: If (2) is convergent for any z n and any σ = σ 1 , σ 2 , . . . belonging to some subshift Σ of N symbols (and the limit is independent of z), then there exists j ≥ 1 such that for every σ = σ 1 , σ 2 , . . . Σ the composition (1) is a contraction. This result...

On integrability in F-spaces

Mikhail Popov (1994)

Studia Mathematica

Some usual and unusual properties of the Riemann integral for functions x : [a,b] → X where X is an F-space are investigated. In particular, a continuous integrable l p -valued function (0 < p < 1) with non-differentiable integral function is constructed. For some class of quasi-Banach spaces X it is proved that the set of all X-valued functions with zero derivative is dense in the space of all continuous functions, and for any two continuous functions x and y there is a sequence of differentiable...

Currently displaying 2621 – 2640 of 4583