Displaying 301 – 320 of 880

Showing per page

On generalized Moser-Trudinger inequalities without boundary condition

Robert Černý (2012)

Czechoslovak Mathematical Journal

We give a version of the Moser-Trudinger inequality without boundary condition for Orlicz-Sobolev spaces embedded into exponential and multiple exponential spaces. We also derive the Concentration-Compactness Alternative for this inequality. As an application of our Concentration-Compactness Alternative we prove that a functional with the sub-critical growth attains its maximum.

On generalized Peano and Peano derivatives

H. Fejzić (1993)

Fundamenta Mathematicae

A function F is said to have a generalized Peano derivative at x if F is continuous in a neighborhood of x and if there exists a positive integer q such that a qth primitive of F in the neighborhood has the (q+n)th Peano derivative at x; in this case the latter is called the generalized nth Peano derivative of F at x and denoted by F [ n ] ( x ) . We show that generalized Peano derivatives belong to the class [Δ’]. Also we show that they are path derivatives with a nonporous system of paths satisfying the I.I.C....

On Generalized Weyl Fractional q-Integral Operator Involving Generalized Basic Hypergeometric Functions

Yadav, R., Purohit, S., Kalla, S. (2008)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 33D60, 33D90, 26A33Fractional q-integral operators of generalized Weyl type, involving generalized basic hypergeometric functions and a basic analogue of Fox’s H-function have been investigated. A number of integrals involving various q-functions have been evaluated as applications of the main results.

On gradients of functions definable in o-minimal structures

Krzysztof Kurdyka (1998)

Annales de l'institut Fourier

We prove the o-minimal generalization of the Łojasiewicz inequality grad f | f | α , with α < 1 , in a neighborhood of a , where f is real analytic at a and f ( a ) = 0 . We deduce, as in the analytic case, that trajectories of the gradient of a function definable in an o-minimal structure are of uniformly bounded length. We obtain also that the gradient flow gives a retraction onto levels of such functions.

On granular derivatives and the solution of a granular initial value problem

Ildar Batyrshin (2002)

International Journal of Applied Mathematics and Computer Science

Perceptions about function changes are represented by rules like “If X is SMALL then Y is QUICKLY INCREASING.” The consequent part of a rule describes a granule of directions of the function change when X is increasing on the fuzzy interval given in the antecedent part of the rule. Each rule defines a granular differential and a rule base defines a granular derivative. A reconstruction of a fuzzy function given by the granular derivative and the initial value given by the rule is similar to Euler’s...

Currently displaying 301 – 320 of 880