On Grüss type inequalities of Dragomir and Fedotov.
Some -analysis variants of Hardy type inequalities of the form with sharp constant are proved and discussed. A similar result with the Riemann-Liouville operator involved is also proved. Finally, it is pointed out that by using these techniques we can also obtain some new discrete Hardy and Copson type inequalities in the classical case.
We use the general Riemann approach to define the Stratonovich integral with respect to Brownian motion. Our new definition of Stratonovich integral encompass the classical Stratonovich integral and more importantly, satisfies the ideal Itô formula without the “tail” term, that is, Further, the condition on the integrands in this paper is weaker than the classical one.