Displaying 3221 – 3240 of 4583

Showing per page

Pointwise regularity associated with function spaces and multifractal analysis

Stéphane Jaffard (2006)

Banach Center Publications

The purpose of multifractal analysis of functions is to determine the Hausdorff dimensions of the sets of points where a function (or a distribution) f has a given pointwise regularity exponent H. This notion has many variants depending on the global hypotheses made on f; if f locally belongs to a Banach space E, then a family of pointwise regularity spaces C E α ( x ) are constructed, leading to a notion of pointwise regularity with respect to E; the case E = L corresponds to the usual Hölder regularity, and...

Polynomial Expansions for Solutions of Higher-Order Bessel Heat Equation in Quantum Calculus

Ben Hammouda, M.S., Nemri, Akram (2007)

Fractional Calculus and Applied Analysis

Mathematics Subject Class.: 33C10,33D60,26D15,33D05,33D15,33D90In this paper we give the q-analogue of the higher-order Bessel operators studied by I. Dimovski [3],[4], I. Dimovski and V. Kiryakova [5],[6], M. I. Klyuchantsev [17], V. Kiryakova [15], [16], A. Fitouhi, N. H. Mahmoud and S. A. Ould Ahmed Mahmoud [8], and recently by many other authors. Our objective is twofold. First, using the q-Jackson integral and the q-derivative, we aim at establishing some properties of this function with proofs...

Polynomial selections and separation by polynomials

Szymon Wąsowicz (1996)

Studia Mathematica

K. Nikodem and the present author proved in [3] a theorem concerning separation by affine functions. Our purpose is to generalize that result for polynomials. As a consequence we obtain two theorems on separation of an n-convex function from an n-concave function by a polynomial of degree at most n and a stability result of Hyers-Ulam type for polynomials.

Polynomial set-valued functions

Joanna Szczawińska (1996)

Annales Polonici Mathematici

The aim of this paper is to give a necessary and sufficient condition for a set-valued function to be a polynomial s.v. function of order at most 2.

Polynomials and degrees of maps in real normed algebras

Takis Sakkalis (2020)

Communications in Mathematics

Let 𝒜 be the algebra of quaternions or octonions 𝕆 . In this manuscript an elementary proof is given, based on ideas of Cauchy and D’Alembert, of the fact that an ordinary polynomial f ( t ) 𝒜 [ t ] has a root in 𝒜 . As a consequence, the Jacobian determinant | J ( f ) | is always non-negative in 𝒜 . Moreover, using the idea of the topological degree we show that a regular polynomial g ( t ) over 𝒜 has also a root in 𝒜 . Finally, utilizing multiplication ( * ) in 𝒜 , we prove various results on the topological degree of products...

Polynomials, sign patterns and Descartes' rule of signs

Vladimir Petrov Kostov (2019)

Mathematica Bohemica

By Descartes’ rule of signs, a real degree d polynomial P with all nonvanishing coefficients with c sign changes and p sign preservations in the sequence of its coefficients ( c + p = d ) has pos c positive and ¬ p negative roots, where pos c ( mod 2 ) and ¬ p ( mod 2 ) . For 1 d 3 , for every possible choice of the sequence of signs of coefficients of P (called sign pattern) and for every pair ( pos , neg ) satisfying these conditions there exists a polynomial P with exactly pos positive and exactly ¬ negative roots (all of them simple). For d 4 this is not...

Currently displaying 3221 – 3240 of 4583