Pointwise limits of subsequences and -sets
The purpose of multifractal analysis of functions is to determine the Hausdorff dimensions of the sets of points where a function (or a distribution) f has a given pointwise regularity exponent H. This notion has many variants depending on the global hypotheses made on f; if f locally belongs to a Banach space E, then a family of pointwise regularity spaces are constructed, leading to a notion of pointwise regularity with respect to E; the case corresponds to the usual Hölder regularity, and...
Mathematics Subject Class.: 33C10,33D60,26D15,33D05,33D15,33D90In this paper we give the q-analogue of the higher-order Bessel operators studied by I. Dimovski [3],[4], I. Dimovski and V. Kiryakova [5],[6], M. I. Klyuchantsev [17], V. Kiryakova [15], [16], A. Fitouhi, N. H. Mahmoud and S. A. Ould Ahmed Mahmoud [8], and recently by many other authors. Our objective is twofold. First, using the q-Jackson integral and the q-derivative, we aim at establishing some properties of this function with proofs...
K. Nikodem and the present author proved in [3] a theorem concerning separation by affine functions. Our purpose is to generalize that result for polynomials. As a consequence we obtain two theorems on separation of an n-convex function from an n-concave function by a polynomial of degree at most n and a stability result of Hyers-Ulam type for polynomials.
The aim of this paper is to give a necessary and sufficient condition for a set-valued function to be a polynomial s.v. function of order at most 2.
Let be the algebra of quaternions or octonions . In this manuscript an elementary proof is given, based on ideas of Cauchy and D’Alembert, of the fact that an ordinary polynomial has a root in . As a consequence, the Jacobian determinant is always non-negative in . Moreover, using the idea of the topological degree we show that a regular polynomial over has also a root in . Finally, utilizing multiplication () in , we prove various results on the topological degree of products...
By Descartes’ rule of signs, a real degree polynomial with all nonvanishing coefficients with sign changes and sign preservations in the sequence of its coefficients () has positive and negative roots, where and . For , for every possible choice of the sequence of signs of coefficients of (called sign pattern) and for every pair satisfying these conditions there exists a polynomial with exactly positive and exactly negative roots (all of them simple). For this is not...