Previous Page 7

Displaying 121 – 137 of 137

Showing per page

Multiplication, distributivity and fuzzy-integral. I

Wolfgang Sander, Jens Siedekum (2005)

Kybernetika

The main purpose is the introduction of an integral which covers most of the recent integrals which use fuzzy measures instead of measures. Before we give our framework for a fuzzy integral we motivate and present in a first part structure- and representation theorems for generalized additions and generalized multiplications which are connected by a strong and a weak distributivity law, respectively.

Multiplicative functionals on algebras of differentiable functions.

Jesús A. Jaramillo (1990)

Extracta Mathematicae

Let Ω be an open subset of a real Banach space E and, for 1 ≤ m ≤, let Cm(Ω) denote the algebra of all m-times continuously Fréchet differentiable real functions defined on Ω. We are concerned here with the question as to wether every nonzero algebra homomorphism φ: Cm(Ω) → R is given by evaluation at some point of Ω, i.e., if there exists some a ∈ Ω such that φ(f) = f(a) for each f ∈ Cm(Ω). This problem has been considered in [1,4,5] and [6]. In [6], a positive answer is given in the case that...

Multiplicity and uniqueness for a class of discrete fractional boundary value problems

Lv Zhanmei, Gong Yanping, Chen Yi (2014)

Applications of Mathematics

The paper deals with a class of discrete fractional boundary value problems. We construct the corresponding Green's function, analyse it in detail and establish several of its key properties. Then, by using the fixed point index theory, the existence of multiple positive solutions is obtained, and the uniqueness of the solution is proved by a new theorem on an ordered metric space established by M. Jleli, et al. (2012).

Multipliers of spaces of derivatives

Jan Mařík, Clifford E. Weil (2004)

Mathematica Bohemica

For subspaces, X and Y , of the space, D , of all derivatives M ( X , Y ) denotes the set of all g D such that f g Y for all f X . Subspaces of D are defined depending on a parameter p [ 0 , ] . In Section 6, M ( X , D ) is determined for each of these subspaces and in Section 7, M ( X , Y ) is found for X and Y any of these subspaces. In Section 3, M ( X , D ) is determined for other spaces of functions on [ 0 , 1 ] related to continuity and higher order differentiation.

Multiplying balls in the space of continuous functions on [0,1]

Marek Balcerzak, Artur Wachowicz, Władysław Wilczyński (2005)

Studia Mathematica

Let C denote the Banach space of real-valued continuous functions on [0,1]. Let Φ: C × C → C. If Φ ∈ +, min, max then Φ is an open mapping but the multiplication Φ = · is not open. For an open ball B(f,r) in C let B²(f,r) = B(f,r)·B(f,r). Then f² ∈ Int B²(f,r) for all r > 0 if and only if either f ≥ 0 on [0,1] or f ≤ 0 on [0,1]. Another result states that Int(B₁·B₂) ≠ ∅ for any two balls B₁ and B₂ in C. We also prove that if Φ ∈ +,·,min,max, then the set Φ - 1 ( E ) is residual whenever E is residual in...

Multivariate polynomial inequalities viapluripotential theory and subanalytic geometry methods

W. Pleśniak (2006)

Banach Center Publications

We give a state-of-the-art survey of investigations concerning multivariate polynomial inequalities. A satisfactory theory of such inequalities has been developed due to applications of both the Gabrielov-Hironaka-Łojasiewicz subanalytic geometry and pluripotential methods based on the complex Monge-Ampère operator. Such an approach permits one to study various inequalities for polynomials restricted not only to nice (nonpluripolar) compact subsets of ℝⁿ or ℂⁿ but also their versions for pieces...

Currently displaying 121 – 137 of 137

Previous Page 7