The M-components of level sets of continuous functions in WBV.
We prove that the topographic map structure of upper semicontinuous functions, defined in terms of classical connected components of its level sets, and of functions of bounded variation (or a generalization, the WBV functions), defined in terms of M-connected components of its level sets, coincides when the function is a continuous function in WBV. Both function spaces are frequently used as models for images. Thus, if the domain Ω' of the image is Jordan domain, a rectangle, for instance, and...