Funktionen beschränkter Homogenität.
We study a class of functions which differ essentially from those which are the sum of a convex function and a regular one and which have interesting properties related to -convergence and to problems with non-convex constraints. In particular some results are given for the associated evolution equations.
La semiconcavità è una nozione che generalizza quella di concavità conservandone la maggior parte delle proprietà ma permettendo di ampliarne le applicazioni. Questa è una rassegna dei punti più salienti della teoria delle funzioni semiconcave, con particolare riguardo allo studio dei loro insiemi singolari. Come applicazione, si discuterà una formula di rappresentazione per la soluzione di un modello dinamico per la materia granulare.
The author proved in 2018 that if is an open subset of a Hilbert space, continuous functions and a nontrivial modulus such that , is locally semiconvex with modulus and is locally semiconcave with modulus , then there exists such that . This is a generalization of Ilmanen’s lemma (which deals with linear modulus and functions on an open subset of ). Here we extend the mentioned result from Hilbert spaces to some superreflexive spaces, in particular to spaces, . We also prove...
We obtain interpolation inequalities for derivatives: , and their counterparts expressed in Orlicz norms: ||∇f||²(q,α) ≤ C||Φ₁(x,|f|,|∇(2)f|)||(p,β) ||Φ₂(x,|f|,|∇(2)f|)||(r,γ)where is the Orlicz norm relative to the function . The parameters p,q,r,α,β,γ and the Carathéodory functions Φ₁,Φ₂ are supposed to satisfy certain consistency conditions. Some of the classical Gagliardo-Nirenberg inequalities follow as a special case. Gagliardo-Nirenberg inequalities in logarithmic spaces with higher...
We derive inequalities of Gagliardo-Nirenberg type in weighted Orlicz spaces on ℝⁿ, for maximal functions of derivatives and for the derivatives themselves. This is done by an application of pointwise interpolation inequalities obtained previously by the first author and of Muckenhoupt-Bloom-Kerman-type theorems for maximal functions.
This note contains a simple example which does clearly indicate the differences in the Henstock-Kurzweil, McShane and strong McShane integrals for Banach space valued functions.